3,184 research outputs found

    The effect of NOM characteristics and membrane type on microfiltration performance

    Get PDF
    Efforts to understand and predict the role of different organic fractions in the fouling of low-pressure membranes are presented. Preliminary experiments with an experimental apparatus that incorporates automatic backwashing and filtration over several days has shown that microfiltration of the hydrophilic fractions leads to rapid flux decline and the formation of a cake or gel layer, while the hydrophobic fractions show a steady flux decline and no obvious formation of a gel or cake layer. The addition of calcium to the weakly hydrophobic acid (WHA) fraction led to the formation of a gel layer from associations between components of the WHA. The dominant foulants were found to be the neutral and charged hydrophilic compounds, with hydrophobic and small pore size membranes being the most readily fouled. The findings suggest that surface analyses such as FTIR will preferentially identify hydrophilic compounds as the main foulants, as these components form a gel layer on the surface while the hydrophobic compounds adsorb within the membrane pores. Furthermore, coagulation pre-treatment is also likely to reduce fouling by reducing pore constriction rather than the formation of a gel layer, as coagulants remove the hydrophobic compounds to a large extent and very little of the hydrophilic neutral components

    Austerity in America

    Get PDF
    The main focus of Austerity in America concerns how the country\u27s geographical belts contribute to the culture of austerity in US capitalism in the time since Reaganism. In this dissertation I examine the Corn Belt, the Rust Belt, the Bible Belt, the Sun Belt and the Marijuana Belt as stages in the development of America’s culture of austerity. Since the early 1980s America’s culture of austerity has protected the wealthy elite from the working classes, who have been punished by the offshoring of US manufacturing jobs in post-Fordist corporate restructuring. The overall goal of this research is to address how the culture of austerity, the demand that Americans do more for less, protects the concentration of wealth in US capitalism from the popular demand for better paying jobs and social security. The global hegemony of US corporations produces economic opulence for the top one percent and economic deprivation for the masses, who enjoy little to no social security. The solid economic security of industrial jobs and company pensions for the working classes has been melted into thin air by capitalist exchange. In the culture of austerity, the political regime of tax cuts for the wealthy ensures an austere diet of low wages, no company pensions and pathetic social security for the working masses, who work longer and longer hours for less and less. US capitalism produces unparalleled economic wealth, yet Americans have little economic security

    Separation of aqueous salt solution by pervaporation through hybrid organic-inorganic membrane: effect of operating conditions

    Get PDF
    Hybrid polymer-inorganic membranes were prepared by crosslinking poly(vinyl alcohol) (PVA), maleic acid (MA) and silica via an aqueous sol–gel route. Membrane characterisation results revealed silica nanoparticles (b10 nm) were well dispersed in the polymer matrix and significantly reduced swelling of the membrane. The membranes were tested for pervaporation separation of aqueous salt solution with NaCl concentrations of 0.2–5.0 wt% at temperatures 20–65 °C, feed flowrates 30–150 mL/min and permeate pressures 2–40 Torr. The salt rejection remained high (up to 99.9%) under all operating conditions. A high water flux of 11.7 kg/m2 h could be achieved at a feed temperature of 65 °C and a vacuum of 6 Torr. The effect of operating conditions on water flux is discussed in relation to diffusion coefficients of water and fundamental transport mechanism through the membrane. The activation energy for water permeation was found to vary from 23.8 to 20.1 kJ/kmol when the salt concentration in the feed was increased from 0.2 to 5.0 wt%

    An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant

    Get PDF
    The fouling of a spiral wound reverse osmosis (RO) membrane after nearly 1 year of service in a brackish water treatment plant was investigated using optical and electron microscopic methods, Fourier transform infrared spectroscopy (FTIR) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Both the top surface and the cross-section of the fouled membrane were analysed to monitor the development of the fouling layer. It has been found that the extent of fouling was uneven across the membrane surface with regions underneath or in the vicinity of the strands of the feed spacer being more severely affected. Fouling appeared to have developed through different stages. In particular, it consisted of an initial thin fouling layer of an amorphous matrix with embedded particulate matter. The amorphous matrix comprised organic–Al–P complexes and the particulate matter was mostly aluminium silicates. Subsequently, as the fouling layer reached a thickness of about 5–7 μm, further amorphous material, which is suggested to include extracellular polymeric substances such as polysaccharides, started to deposit on top of the existing fouling layer. This secondary amorphous material did not seem to contain any particulate matter nor any inorganic elements within it, but acted as a substrate upon which aluminium silicate crystals grew exclusively in the absence of other foulants, including natural organic matter (NOM

    Assessing Integrated Water Management Options for Urban Developments - Canberra case study

    Get PDF
    Urban water services in the Australian Capital Territory (ACT) are currently provided through conventional centralised systems, involving large scale water distribution, wastewater collection, water and wastewater treatment. A study was conducted to assist Environment ACT in setting broad policies for future water services in Canberra. This paper presents the outcomes of a study examining the effects of various water servicing options on water resources and the environment, for two townships in Canberra, one existing and one greenfield site. Three modelling tools were used to predict the effects of various alternative water servicing scenarios, including demand management options, rainwater tanks, greywater use, on-site detention tanks, gross pollutant traps, swales and ponds. The results show that potable water reductions are best achieved by demand management tools or a combination of greywater and rainwater use for existing suburbs, while 3rd pipe systems are preferred for greenfield sites. For this specific climatic region and end use demands, modelling predicted increased water savings from raintanks compared to greywater systems alone, with raintanks providing the additional benefit of reduced peak stormwater flows at the allotment scale. Rainwater and stormwater reuse from stormwater ponds within the catchments was found to provide the highest reduction in nutrient discharge from the case study areas. Environment ACT amended planning controls to facilitate installation of raintanks and greywater systems, and commenced a Government funded rebate scheme for raintanks as a result of this study

    Diagnostic analysis of RO desalting treated waste water

    Get PDF
    Diagnostic analysis of reverse osmosis membranes that were fed with Western treatment plant (WTP) recycled water was investigated by both thermodynamic calculations and laboratory experiments in order to predict the feasibility of RO desalting for WTP. The thermodynamic calculations suggested that RO recoveries of 80–85% were feasible with careful control of feed water pH and the use of chemical additives such as antiscalants and chelating agents, it also predicted the major minerals of concern to be silica, calcium fluoride, calcium carbonate, and calcium phosphate. Following the thermodynamic simulations, diagnostic laboratory experiments were undertaken. The experiments showed that the major contributor to scale formation was indeed calcium phosphate and possibly another calcium based compound, which was strongly suspected to be calcium carbonate. Based on previously published literature that indicated anti-scalants did not substantially decrease the scaling effect of calcium phosphate and laboratory tests that indicated controlling the pH to 6.4 in the feed water dramatically reduced scaling formation, it was suggested that the feed water could be controlled by pH adjustments only. Inter-stage pH correction was suggested as an optional technique to enhance the overall water recovery to above 95%

    Ultrasound enhancement of microfiltration performance for natural organic matter removal

    Get PDF
    Sonication of water at 1500 W power prior to microfiltration showed that short sonication times (60 s) gave a reduced flux decline. It is suggested that a less potent, smaller molecular form of the natural organic matter (NOM) was produced by sonication. Longer sonication times diminished this beneficial effect. This may be due to the formation of aggregates or compounds that are more readily adsorbed on the membrane. Where the sonication was preceded by an alum treatment, the flux loss showed a regular decrease with longer sonication times. It is suggested that the effects of sonication on the alum flocs and on the flocs; NOM interactions may play a critical role in regulating the flux. Where sand was present on sonication at 800 and 1400 W, the cavitational energy was focussed on adsorbed organic material, resulting in more efficient destruction and the formation of compounds that counteracted the flux enhancement

    Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems

    Get PDF
    The search for lower energy consumption desalination systems has been driving research in the past decade towards the investigation of osmotically driven membrane processes, such as forward osmosis (FO) or osmotic distillation (OD). Despite similarities with reverse osmosis (RO) membranes, thin film composite (TFC) for FO membranes require careful design to reduce salt concentration polarization formation within the large pores composing the supporting layer. An investigation of a novel, highly stable, robust support made solely of carbon nanotubes (CNTs), which could find applications in both RO and FO was undertaken. TFC membranes were fabricated by interfacially polymerizing for the first time a dense poly(amide) (PA) layer on self-supporting bucky-papers (BPs) made of hydroxyl-functionalized entangled CNTs. These hydrophilic supports exhibited low contact angle with water (90%), making it a promising material when compared with poly(sulfone) (PSf), the traditional polymer used to fabricate TFC membrane supports in RO. In addition, the impact of the support hydrophilicity on the stability of the interfacially polymerized film and on water adsorption was investigated by oxygen-plasma treating various potential support materials, exhibiting similar geometrical properties. The morphology and salt diffusion of both CNT BP and PSf supports were investigated, and the novel BP–PA composite membranes were found to be superior to commercially available TFC membranes
    • …
    corecore